
Pointers
In Fortran, a pointer variable or simply a pointer is best thought of as a ``free-floating'' name that may be
associated dynamically with or ``aliased to'' some data object. The data object already may have one or
more other names or it may be an unnamed object.

Syntactically, a pointer is just any sort of variable that has been given the pointer attribute in a
declaration. A variable with the pointer attribute may be used just like any ordinary variable, but it may
be used in some additional ways as well.

Next slide

Pointers

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld001.htm [4/12/2000 3:49:38 PM]

The States of a Pointer
Each pointer in a program is in one of the three following states:

It may be undefined, which is the condition of all pointers at the beginning of a program.1.

It may be null, which means that it is not the alias of any data object.2.

It may be associated, which means that it is the alias of some target data object.3.

The term ``disassociated'' is used when a pointer is in state 2. Thus, the associated intrinsic inquiry
function distinguishes between states 2 and 3 only.

Learn more about pointers.

Previous slide Next slide

states

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld002.htm [4/12/2000 3:49:38 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/pointer.html

The Pointer Assignment Statement

real, pointer :: p
real, target :: r

p => r

This statement causes p to point to r, or causes p to be an alias for r.

Previous slide Next slide

assign

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld003.htm [4/12/2000 3:49:39 PM]

The target Attribute
Any variable aliased or ``pointed to'' by a pointer must be given the target attribute when declared and it
must have the same type, kind, and rank as the pointer.

However, it is not necessary that the variable have a defined value.

Learn more about the pointer attibute.
Learn more about the target attibute.

Previous slide Next slide

target

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld004.htm [4/12/2000 3:49:39 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/ptrattr.html
http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/target.html

A variable with the pointer attribute may be an object more complicated than a simple variable. It may be
an array section or structure, for example. The following declares v to be a pointer to a one-dimensional
array of reals:

real, dimension (:), pointer :: v
real, dimension (40, 60), target :: real_array

With v so declared, it may be used to alias any one-dimensional array of reals, including a row or
column of real_array.

v => real_array (4, :)

Previous slide Next slide

descriptor

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld005.htm [4/12/2000 3:49:39 PM]

Use of Pointer Variables
Once a variable with the pointer attribute is an alias for some data object, that is, it is pointing to
something, it may be used in the same way that any other variable may be used. For the example above
using v,

print *, v

has exactly the same effect as

print *, real_array (4, :)

and the assignment statement

v = 0

has the effect of setting all of the elements of the fourth row of the array real_array to 0.

Previous slide Next slide

use

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld006.htm [4/12/2000 3:49:39 PM]

A different version of the pointer assignment statement occurs when the right side also is a pointer. This
is illustrated by the following example, in which p1 and p2 are both real variables with the pointer
attribute and r is a real variable with the target attribute.

real, target :: r
real, pointer :: p1, p2
r = 4.7
p1 => r
p2 => p1
r = 7.4
print *, p2

Previous slide Next slide

ptrptr1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld007.htm [4/12/2000 3:49:39 PM]

After execution of the first assignment statement

r = 4.7

r is a name that refers to the value 4.7:

 r

 | |
 | 4.7 |
 |_____|

Previous slide Next slide

ptrptr2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld008.htm [4/12/2000 3:49:39 PM]

The first pointer assignment

p1 => r

causes p1 to be an alias for r, so that the value of the variable p1 is 4.7. The value 4.7 now has two
names, r and p1, by which it may be referenced.

 r

 p1 --> | |
 | 4.7 |
 |_____|

Previous slide Next slide

ptrptr3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld009.htm [4/12/2000 3:49:39 PM]

The next pointer assignment

p2 => p1

causes p2 to be an alias for the same thing that p1 is an alias for, so the value of the variable p2 is also
4.7. The value 4.7 now has three names or aliases, r, p1, and p2.

 r

 p1 --> | |
 p2 --> | 4.7 |
 |_____|

Changing the value of r to 7.4 causes the value of both p1 and p2 also to change to 7.4 because they are
both aliases of r. Thus, the next print statement

print *, p2

prints the value 7.4.

Previous slide Next slide

ptrptr4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld010.htm [4/12/2000 3:49:40 PM]

The pointer assignment statement

p => q

is legal whatever the status of q. If q is undefined, p is undefined; if it is null, p is nullified; and if it is
aliased to or associated with a target, p becomes associated with the same target. Note that if q is
associated with some target, say t, it is not necessary that t have a defined value.

Previous slide Next slide

ptrptr5

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld011.htm [4/12/2000 3:49:40 PM]

The Difference between Pointer and Ordinary
Assignment
Pointer assignment transfers the status of one pointer to another. In an ordinary assignment in which
pointers occur, the pointers must be viewed simply as aliases for their targets.

real, pointer :: p1, p2
real, target :: r1, r2
 . . .
r1 = 1.1; r2 = 2.2
p1 => r1; p2 => r2

This produces the following situation:

 r1 r2
 _____ _____
 p1 --> | | p2 --> | |
 | 1.1 | | 2.2 |
 |_____| |_____|

Previous slide Next slide

diff1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld012.htm [4/12/2000 3:49:40 PM]

Now suppose the ordinary assignment statement

p2 = p1

is executed. This statement has exactly the same effect as the statement

r2 = r1

because p2 is an alias for r2 and p1 is an alias for r1. The situation is now:

 r1 r2
 _____ _____
 p1 --> | | p2 --> | |
 | 1.1 | | 1.1 |
 |_____| |_____|

because the value 1.1 has been copied from r1 to r2. The values of p1, p2, r1, and r2 are all 1.1.
Subsequent changes to r1 or p1 will have no effect on the value of r2.

Previous slide Next slide

diff2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld013.htm [4/12/2000 3:49:40 PM]

If, on the other hand, the pointer assignment statement

p2 => p1

were executed instead, this statement would produce the situation

 r1 r2
 _____ _____
 p1 --> | | | |
 p2 --> | 1.1 | | 2.2 |
 |_____| |_____|

In this case, too, the values of p1, p2, and r1 are 1.1, but the value of r2 remains 2.2. Subsequent
changes to p1 or r1 do change the value of p2. They do not change the value of r2.

Previous slide Next slide

diff3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld014.htm [4/12/2000 3:49:40 PM]

If the target of p1 is changed to r2 by the pointer assignment statement

p1 => r2

the target r1 and value 1.1 of p2 do not change, producing the following situation:

 r1 r2
 _____ _____
 | | p1 --> | |
 p2 --> | 1.1 | | 2.2 |
 |_____| |_____|

The pointer p2 remains an alias for r1; it does not remain associated with p1.

Previous slide Next slide

diff4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld015.htm [4/12/2000 3:49:40 PM]

The allocate and deallocate Statements
With the allocate statement, it is possible to create space for a value and cause a pointer variable to
refer to that space. The space has no name other than the pointer mentioned in the allocate statement.

allocate (p1)

creates space for one real number and makes p1 an alias for that space. No real value is stored in the
space by the allocate statement, so it is necessary to assign a value to p1 before it can be used
(unless it has been default initialized), just as with any other real variable.

 p1 --> | |
 | |
 |_____|

Learn more about pointer allocation.

Previous slide Next slide

allocate1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld016.htm [4/12/2000 3:49:41 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/ptralloc.html

The statement

p1 = 7.7

sets up the following situation.

 p1 --> | |
 | 7.7 |
 |_____|

Before a value is assigned to p1, it must either be associated with an unnamed target by an allocate
statement or be aliased with a target by a pointer assignment statement.

Previous slide Next slide

allocate2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld017.htm [4/12/2000 3:49:41 PM]

The deallocate statement throws away the space pointed to by its argument and makes it null (state
2). For example,

deallocate (p1)

disassociates p1 from any target and nullifies it.

 p1 -->

After p1 is deallocated, it must not be referenced in any situation that requires a value; however it may
be used, for example, on the right side of a pointer assignment statement. If other pointer variables were
aliases for p1, they, too, no longer reference a value.

Previous slide Next slide

deallocate

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld018.htm [4/12/2000 3:49:41 PM]

Pointers vs. Allocatable Arrays
Everything that can be done with allocatable arrays also can be done with pointers.

real, dimension (:, :), pointer :: matrix
 . . .
read *, n
allocate (matrix (n, n))
matrix = 0
 . . .

Previous slide Next slide

vs

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld019.htm [4/12/2000 3:49:41 PM]

Exercise
Read a value for n, allocate a pointer array of n elements, put n random numbers into the array,
sort the array, and print the first 10 and last 10 elements of the sorted array.

1.

Previous slide Next slide

ex1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld020.htm [4/12/2000 3:49:41 PM]

The nullify Statement and null Intrinsic
Function
When a pointer is nullified, it may be tested and assigned to other pointers by pointer assignment (=>). A
pointer is nullified with the nullify statement or null function.

nullify (p1)
pqr => null()

If the target of p1 and p2 are the same, nullifying p1 does not nullify p2. On the other hand, if p1 is
null, then executing the pointer assignment

p2 => p1

causes p2 to be null also.

A null pointer is not associated with any target or other pointer.

Learn more about pointer nullification.

Previous slide Next slide

nullify

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld021.htm [4/12/2000 3:49:41 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/nullify.html

The associated Intrinsic Function
The associated intrinsic function may be used to determine if a pointer variable is pointing to, or is
an alias for, another object. To use this function, the pointer variable must be defined; that is, it must
either be the alias of some data object or be null. The associated function indicates which of these
two cases is true and so also provides the means of testing if a pointer is null.

The associated function may have a second argument. If the second argument is a target, the value
of the function indicates whether the first argument is an alias of the second argument. If the second
argument is a pointer, it must be defined; in this case, the value of the function is true if both pointers are
null or if they are both aliases of the same target.

Previous slide Next slide

associated1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld022.htm [4/12/2000 3:49:42 PM]

For example, the expression

associated (p1, r)

indicates whether or not p1 is an alias of r, and the expression

associated (p1, p2)

indicates whether p1 and p2 are both aliases of the same thing or they are both null.

Learn more about pointer association.

Previous slide Next slide

associated2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld023.htm [4/12/2000 3:49:42 PM]

http://www.navo.hpc.mil/pet/Video/Courses/f90/Extra/ptrassoc.html

Heat Equation Using Pointers

! A simple solution to the heat equation using arrays
! and pointers

program heat

real, dimension(10,10), target :: plate
real, dimension(8,8) :: temp
real, pointer, dimension(:,:) :: n, e, s, w, inside

real :: diff
integer :: i,j, niter

Previous slide Next slide

heat1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld024.htm [4/12/2000 3:49:42 PM]

! Set up initial conditions
plate = 0
plate(1:10,1) = 1.0 ! boundary values
plate(1,1:10) = (/ (0.1*j, j = 10, 1, -1) /)

! Point to parts of the plate
inside => plate(2:9,2:9)
n => plate(1:8,2:9)
s => plate(3:10,2:9)
e => plate(2:9,1:8)
w => plate(2:9,3:10)

Previous slide Next slide

heat2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld025.htm [4/12/2000 3:49:42 PM]

! Iterate
niter = 0
do
 temp = (n + e + s + w)/4.0
 diff = maxval(abs(temp-inside))
 niter = niter + 1
 inside = temp
 print *, niter, diff
 if (diff < 1.0e-4) then
 exit
 endif
end do

do i = 1,10
 print "(10f7.3)", plate(1:10,i)
enddo

end program heat

Previous slide Next slide

heat3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld026.htm [4/12/2000 3:49:42 PM]

Tree Sort

program tree_sort
! Sorts a file of integers by building a
! tree, sorted in infix order.
! This sort has expected behavior n log n,
! but worst case (input is sorted) n ** 2.

 implicit none
 type node
 integer :: value
 type (node), pointer :: left => null(), &
 right => null()
 end type node

 type (node), pointer :: tree_top => null() ! A tree
 integer :: number, ios

Previous slide Next slide

treesort1

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld027.htm [4/12/2000 3:49:42 PM]

 ! Start with empty tree
 do
 read (*, *, iostat = ios) number
 if (ios < 0) exit
 ! Put next number in tree
 call insert (tree_top)
 end do
 ! Print nodes of tree in infix order
 call print_tree (tree_top)

contains

Previous slide Next slide

treesort2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld028.htm [4/12/2000 3:49:42 PM]

 recursive subroutine insert (t)

 type (node), pointer :: t ! A tree

 ! If (sub)tree is empty,
 ! put number at root
 if (.not. associated (t)) then
 allocate (t)
 t % value = number ! Subtrees are null
 ! Otherwise, insert into correct subtree
 else if (number < t % value) then
 call insert (t % left)
 else
 call insert (t % right)
 end if

 end subroutine insert

Previous slide Next slide

treesort3

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld029.htm [4/12/2000 3:49:43 PM]

 recursive subroutine print_tree (t)
 ! Print tree in infix order

 type (node), pointer :: t ! A tree

 if (associated (t)) then
 call print_tree (t % left)
 print *, t % value
 call print_tree (t % right)
 end if

 end subroutine print_tree

end program tree_sort

Previous slide Next slide

treesort4

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld030.htm [4/12/2000 3:49:43 PM]

Exercise
Implement a new data type stack_of_integers, with operations (functions)
new_empty_stack, is_stack_empty, top_of_stack, rest_of_stack (that returns
the stack without the top element), and sorted (stack) (that returns a stack consisting of the
same elements of stack, but sorted with the smallest element at the top of the stack).

1.

Previous slide

ex2

http://www.navo.hpc.mil/pet/Video/Courses/f90/mod8/slides/tsld031.htm [4/12/2000 3:49:43 PM]

	hpc.mil
	Pointers
	states
	assign
	target
	descriptor
	use
	ptrptr1
	ptrptr2
	ptrptr3
	ptrptr4
	ptrptr5
	diff1
	diff2
	diff3
	diff4
	allocate1
	allocate2
	deallocate
	vs
	ex1
	nullify
	associated1
	associated2
	heat1
	heat2
	heat3
	treesort1
	treesort2
	treesort3
	treesort4
	ex2

